Two-level Reconfigurable Architecture for High-Performance Signal Processing
نویسندگان
چکیده
High speed signal processing is often performed as a pipeline of functions on streams or blocks of data. In order to obtain both flexibility and performance, parallel, reconfigurable array structures are suitable for such processing. The array topology can be used both on the micro and macro-levels, i.e. both when mapping a function on a fine-grained array structure and when mapping a set of functions on different nodes in a coarse-grained array. We outline an architecture on the macro-level as well as explore the use of an existing, commercial, word level reconfigurable architecture on the micro-level. We implement an FFT algorithm in order to determine how much of the available resources are needed for controlling the computations. Having no program memory and instruction sequencing available, a large fraction, 70%, of the used resources is used for controlling the computations, but this is still more efficient than having statically dedicated resources for control. Data can stream through the array at maximum I/O rate, while computing FFTs. The paper also shows how pipelining of the FFT algorithm over a two-level reconfigurable array of arrays can be done in various ways, depending on the application
منابع مشابه
Design and Implementation of Digital Demodulator for Frequency Modulated CW Radar (RESEARCH NOTE)
Radar Signal Processing has been an interesting area of research for realization of programmable digital signal processor using VLSI design techniques. Digital Signal Processing (DSP) algorithms have been an integral design methodology for implementation of high speed application specific real-time systems especially for high resolution radar. CORDIC algorithm, in recent times, is turned out to...
متن کاملA Two-Level Reconfigurable Architecture for Digital Signal Processing
This paper describes a novel reconfigurable architecture for digital signal processing (DSP). The architecture consists of a two-level array of cells and interconnections. DSP algorithms are divided into 4-bit units and mapped onto the first level of cells. Each cell uses a 4x4 matrix of small elements to implement the basic operations required by the algorithm. Cells also contain pipeline latc...
متن کاملAlgorithm-Based Low-Power and High-Performance Multimedia Signal Processing
Low power and high performance are the two most important criteria for many signal-processing system designs, particularly in real-time multimedia applications. There have been many approaches to achieve these two design goals at many different implementation levels ranging from very-large-scale-integration fabrication technology to system design. However, the major drawback is that present app...
متن کاملImplementation of a Coarse-Grained Reconfigurable Media Processor for AVC Decoder
ADRES (Architecture for Dynamically Reconfigurable Embedded Systems) is a templatized coarse-grained reconfigurable processor architecture. It targets at embedded applications which demand high-performance, low-power and high-level language programmability. Compared with typical VLIW-based DSP, ADRES can exploit higher parallelism by using more scalable hardware with support of novel compilatio...
متن کاملReconfigurable Processors for High-Performance, Embedded Digital Signal Processing
For high-performance, embedded digital signal processing, digital signal processors (DSPs) are very important. Further, they have many features which make their integration with on-chip reconfigurable logic (RL) resources feasible and beneficial. In this paper, we discuss how this integration might be done and the potential area costs and performance benefits of incorporating RL onto a DSP chip...
متن کامل